杨柯1, 牛梦超1,2, 田家龙3, 王威1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 东北大学冶金学院 沈阳110819
摘要
飞机起落架的性能与飞机的使用安全性密切相关,因此提高飞机起落架用材料的综合性能至关重要。本文通过总结飞机起落架用材料的应用现状和存在的问题,提出了新一代飞机起落架用材料的发展方向,并重点介绍了一种兼顾高强度、高韧性和优异耐蚀性能的新型马氏体时效不锈钢,该钢作为未来起落架用钢的候选材料具有广阔的应用前景。
关键词:
飞机起落架是飞机最重要的结构件之一,其性能与飞机的飞行安全密切相关。统计显示,70%以上的航空事故都是由起飞和降落过程中起落架的失效引起。因此,随着飞机安全性和舒适性要求的提高,对飞机起落架材料的综合性能要求也越来越高。进入21世纪后,当海洋资源再度成为世界关注的焦点之时,海洋的国家战略地位也空前提高,因而要求飞机需要长期或频繁服役于海洋环境。因此,经常暴露于海洋环境的飞机起落架将面临更为苛刻的服役环境。而目前已经工业化应用的飞机起落架材料多为高强度低合金钢,如300M、AerMet100等,其强韧性可以达到设计要求,但是耐蚀性能较差,难以满足飞机起落架在海洋环境中对耐蚀性能的要求,因此通常采用表面涂层来改善其耐蚀性能。
为了解决传统高强钢只能依靠表面涂层改善耐蚀性能这一现状,新型高强度不锈钢材料应运而生。本文首先简述了当前使用的飞机起落架材料的发展历程及研究现状,然后通过对比分析不同起落架材料的性能优势,讨论了飞机起落架材料未来的发展方向及趋势,并重点介绍了中国科学院金属研究所在飞机起落架用高强度不锈钢方面取得的最新进展。
飞机的发展初期,起落架主承力构件主要采用4130、30XГCA等1.2 GPa强度级别的高强钢制造。随着超高强度钢技术的进步以及飞机设计指标的不断提高,采用了更高强度级别(1.5~1.7 GPa)的超高强度钢,如4340、4330M等。目前,随着材料技术和制造技术的发展,强度级别在1.9 GPa的300M钢以其优越的强韧性能成为军民两用飞机起落架的首选材料,是目前超高强度钢中强度最高和应用最为成功的钢种[1,2]。
但是300M钢的断裂韧性较低。为了进一步提高飞机起落架材料的韧性以满足航空工业发展的需要,美国Carptenter技术公司于20世纪90年代初推出新钢种AerMet100[3],其断裂韧性能够达到115 MPa·m1/2,并已经成功用于F/A-18和F-22飞机起落架[4,5]。
低合金超高强度钢的力学性能能够满足飞机起落架的设计需求,但其最大的不足就是耐蚀性能很差,只能通过表面涂层改善其耐蚀性能,进而避免起落架材料因腐蚀而失效[6,7]。但是,表面涂层不仅会造成环境污染问题,增加飞机运行过程中的维护费用,而且涂层脱落是飞机运行过程中的最大问题,给飞机的运行安全带来极大的隐患。
在如今竞争激烈的商业氛围中,更多的制造商开始关注产品的运行成本而非最初的生产成本,因此对结构材料的强度级别提出了更高的要求。同时,考虑到环境污染这一重大问题,表面喷涂等工艺有被削减的趋势,如欧盟正在考虑取消Cd的电镀工艺。由此可见,开发出300M、AISI4340及AerMet100等高强度低合金钢的替代材料势在必行。
进入21世纪后,为了解决飞机起落架因表面涂层失效造成的安全隐患和环境问题,1.9 GPa强度级别马氏体时效不锈钢的研究开发成为一个新的发展方向。上世纪末,美国国防部启动了战略环境研究与发展计划(SERDP),其中在污染防治项目中,提出了设计一种新型的马氏体时效不锈钢来替代传统的飞机起落架材料AerMet100。2006年开发出Ferrium S53马氏体时效不锈钢[8,9],其理论抗拉强度达到1.9 GPa。北京航空材料研究院也开发出了一种高强度不锈钢材料S280[10],其具有比300M和AerMet100更好的耐蚀性能,在盐雾环境中的腐蚀速率比300M低2个数量级,比AerMet100低1个数量级,同时具有优异的力学性能(强度、断裂韧性和疲劳性能),有望替代AerMet100、300M钢用作飞机起落架材料。几种飞机起落架用高强度钢的化学成分和力学性能如表1[1~5,8~11]所示。
表1飞机起落架用高强度钢的化学成分和力学性能[
Table 1Chemical compositions and mechanical properties of high strength steels for landing gear application[
采用双真空冶炼技术(真空熔炼+真空自耗)对经过合金成分优化后的新型钢进行熔炼。对新型钢进行均匀化处理(1200 ℃保温24 h)后,锻造成方坯,其峰时效态热处理工艺为:1050 ℃固溶处理1 h+深冷处理8 h+480 ℃时效处理20 h。利用TEM观察了新型钢在2种不同热处理状态下的显微组织,从图20a和b[43]可以看出,在固溶态下,新型钢为典型的板条马氏体组织,基体中有较高密度的位错,高密度的位错能够为时效过程中强化相的析出提供有利的形核位置,促进析出相的弥散分布,进而增强析出强化效应。图20c[43]为峰时效态下新型钢中的析出相形貌。可以看出,新型钢中有2种不同类型的析出相:一种是尺寸比较大的球状析出相,结合图20d1和d2[43]所示的高分辨电镜像和图21[43]所示的3DAP分析结果,确定该相为R相;另一种则是尺寸比较小的棒状析出相,结合20d3和d4[43]所示的高分辨电镜像和图21[43]所示的3DAP分析结果,确定其为Ni3Ti相。
图20新型钢在固溶态和峰时效态下的微观组织形貌[
Fig.20Microstructures characterization of the new steel by HRTEM[
图21峰时效态下新型钢中的析出相形貌[
Fig.21Morphologies of precipitates observed by atom probe tomography (APT) in the new steel under peak ageing condition[
从图21[43]所示的3DAP结果中还可以看出,新型钢中每种析出相均有2种不同的形貌,Ni3Ti相有尺寸较大的棒状形貌(图21c[43])和尺寸较小的球状形貌(图21e[43])。马氏体时效不锈钢的基体为bcc结构,而Ni3Ti相为hcp结构,在Ni3Ti的长大过程中会存在特定的择优取向,以保证析出相与基体之间最低的界面能,这也是Ni3Ti相长大以后均为棒状的原因所在。尺寸较小的球状Ni3Ti相则是形核初期的Ni3Ti相,由于尚未长大而呈现出球状形貌。R相有尺寸较大的球状形貌(图21b[43])和尺寸较小的片状形貌(图21d[43])。
为了对比分析新型钢的耐蚀性能,选取了17-4 PH、15-5 PH、PH 13-8Mo和原型钢为对比材料,对这5种马氏体时效不锈钢分别进行了峰时效热处理,热处理工艺分别为:1040 ℃固溶处理1 h+油冷+480 ℃时效处理4 h (17-4 PH);1040 ℃固溶处理1 h+油冷+480 ℃时效处理4 h (15-5 PH);925 ℃固溶处理1 h+油冷+535 ℃时效处理4 h (PH 13-8Mo);1050 ℃固溶处理1 h+深冷处理8 h+500 ℃时效处理12 h (原型钢);1050 ℃ 固溶处理1 h+深冷处理8 h+480 ℃时效处理20 h (新型钢)。
对这5种马氏体时效不锈钢的峰时效态试样在3.5%NaCl溶液中进行了浸泡实验。由图22a[53]可以看出,浸泡实验前所有样品的表面均十分光亮。浸泡144 h后,如图22b[53]所示,只有原型钢表面出现了严重的腐蚀,说明原型钢的耐蚀性能最差。其它4种马氏体时效不锈钢中,只有15-5 PH边缘出现了轻微的腐蚀现象,而17-4 PH、PH 13-8Mo和新型钢表面均没有出现腐蚀现象,说明这3种马氏体时效不锈钢均具有优异的耐蚀性能。
图22不同马氏体时效不锈钢峰时效态试样浸泡144 h前后的形貌[
Fig.22Surface morphologies of different maraging stainless steels under peak ageing condition before (a) and after (b) immersion in 3.5%NaCl solution for 144 h (MSS 2 and MSS 1 denote new steel and prototype steel, respectively)[
选取原型钢、新型钢和15-5 PH为研究对象,利用光电子能谱(XPS)对这3种马氏体时效不锈钢经过浸泡实验后的表面钝化膜成分进行了分析。需要注意的是,原型钢的耐蚀性能较差,表面已经出现严重的腐蚀现象。因此原型钢表面应该是腐蚀产物,而不是钝化膜,但为了叙述方便,在文中统称为钝化膜。图23[53]所示为3种马氏体时效不锈钢表面钝化膜成分随溅射时间的变化曲线。可以看出,原型钢表面的钝化膜成分主要是Co的氧化物,厚度约为1.2 µm,而新型钢和15-5 PH表面的钝化膜成分主要是Cr的氧化物,厚度约为100 nm。众所周知,不锈钢之所以具有优异的耐蚀性能,是由于其表面能够形成富Cr的钝化膜,保护基体材料不受腐蚀介质的进一步侵蚀。XPS分析结果表明,新型钢和15-5 PH表面上均可以形成富Cr的钝化膜,这是新型钢和15-5 PH具有优异耐蚀性能的根本原因,而原型钢表面上无法形成完整的富Cr钝化膜,导致原型钢的耐蚀性能较差。
图23不同马氏体时效不锈钢经过浸泡实验后的表面钝化膜成分随溅射时间的变化[
Fig.23XPS concentration-depth profiles for the passive films formed on the MSS 1 (a), MSS 2 (b) and 15-5 PH (c) after immersion test[
图24[43]所示为峰时效状态下新型钢和商用马氏体时效不锈钢的抗拉强度、断裂韧性和耐蚀性能关系图,商用马氏体时效不锈钢的力学性能来自文献[9,23,54~56]。与目前商用马氏体时效不锈钢相比,新型钢的抗拉强度(1.9 GPa)明显高于多数商用马氏体时效不锈钢,略低于Custom 475和Ferrium S53的抗拉强度。除了抗拉强度外,耐蚀性能和断裂韧性是马氏体时效不锈钢的另2个关键性能。17-4 PH的腐蚀电流密度最小,耐蚀性能最优,这得益于17-4 PH中更高的Cr含量(17%)。新型钢的腐蚀电流密度与15-5 PH接近,说明新型钢的耐蚀性能与15-5 PH相当,且明显优于Custom 465、Custom 475、Ferrium S53这3种强度级别较高的商用马氏体时效不锈钢。新型钢的断裂韧性(78 MPa·m1/2)明显高于同强度级别的Custom 475,与Ferrium S53相当。
图24新型钢和商用马氏体时效不锈钢在峰时效状态下的强度-韧性-耐蚀性能关系图[
Fig.24Strength-toughness-corrosion resistance profiles of the new steel and commercial maraging stainless steels under peak ageing conditions[
综上所述,新型马氏体时效不锈钢的抗拉强度(1.9 GPa)、断裂韧性(78 MPa·m1/2)和耐蚀性能(与15-5 PH相当)达到了新一代飞机起落架材料的综合性能要求,有望替代传统的低合金高强度钢而得到应用。与目前常用的马氏体时效不锈钢相比,新型钢的综合性能表现出明显的优势,有望用于在腐蚀环境下服役的承力构件,具有广阔的应用前景。
同时提高超高强度钢的强韧性、损伤容限性能和耐久性对起落架设计的吸引力是毋庸置疑的。但是当海洋资源再度成为世界关注的焦点,海洋的国家战略地位变得更为重要时,飞机特别是舰载机将在整个寿命期内服役于海洋环境下,即长期暴露于高温、高湿、高盐的严酷腐蚀环境中。因此,飞机起落架要求采用耐腐蚀性能更优的超高强度钢来设计和制造。
目前飞机起落架多采用300M或AerMet100钢制造,其缺点是耐蚀性能较差,必须通过表面涂层来提高其耐蚀性能。应用广泛的具有优异耐蚀性能的高强度钢是17-4 PH和15-5 PH等沉淀硬化不锈钢,这类不锈钢多用于受力较大和环境介质有一定腐蚀性的场合。但当强度要求更高时(如1.5 GPa以上),该类不锈钢的应用也会受到限制。
为了解决涂层带来的安全隐患和环境问题,并兼顾材料的高强度和高韧性,中国科学院金属研究所的研究人员基于新的超高强度钢强韧化理论和成分设计理念,研究了Fe-Cr-Ni-Co-Mo-Ti系马氏体时效不锈钢中的“Co效应”,发现一方面Co会恶化马氏体时效不锈钢的耐蚀性能,另一方面Co会提高马氏体时效不锈钢的强度。结合三维原子探针技术和第一原理计算,从原子尺度上揭示了“Co效应”的基本原理。在此研究基础上,成功地开发了一种新型Fe-Cr-Ni-Co-Mo-Ti马氏体时效不锈钢,其表现出优异的综合性能:抗拉强度为1.9 GPa,断裂韧性达到78 MPa·m1/2,耐蚀性能与15-5 PH相当。尽管该新型钢的应力腐蚀断裂韧性还没有报道,但是综合考虑其综合性能,已经达到了飞机起落架材料的基本要求,未来有望替代当前使用的低合金高强度钢而成为下一代飞机或舰载机起落架的备选材料。
1 飞机起落架用材料的应用现状
(a) typical martensitic lath in the specimen after CT (cryogenic treatment) treatment, lath boundary is outlined by red dashed line
(b) dislocation observation in the region taken from the square in
(c) morphology of Ni3Ti and Mo-rich precipitates (R phases) in the steel after peak aging treatment
(d1, d2) high-resolution image of Mo-rich precipitate (R phase) and the corresponding FFT (fast Fourier transform) pattern in the inset
(d3, d4) high-resolution image of Ni3Ti precipitate and the corresponding FFT pattern in the inset
(a) 3-D reconstruction of the atomic positions of Fe (pink points), isoconcentration surface for regions containing more than 10%Mo (atomic fraction, red surfaces) and 35%(Ni+Ti) (atomic fraction, green surfaces)
(b) sphere-like Mo-rich (R) phase outlined by 10%Mo isoconcentration surface
(c) rod-like Ni3Ti phase outlined by Ni (green) and Ti (grey) atoms
(d) flake-like Mo-rich (R) phase outlined by 10%Mo isoconcentration surface
(e) sphere-like Ni3Ti phase outlined by Ni (green) and Ti (grey) atoms
4 总结与展望
来源--金属学报