刘兴军,1,2,3,魏振帮3,4,卢勇3,4,韩佳甲3,4,施荣沛1,2,王翠萍,3,4
1
2
3
4
扩散动力学信息是深入理解合金的相变机制、微观组织形成和演化机理的关键参数,也是实现新型钴基与Nb-Si基高温合金设计与研发必要的基础物性数据。首先,本文系统地归纳了高温合金中常见的合金化元素及其作用。随后,详细介绍了合金体系中自扩散系数与杂质扩散系数的机器学习计算方法、互扩散系数的实验测定方法以及示踪扩散系数的分子动力学计算方法,并介绍了本课题组在新型钴基与Nb-Si基高温合金多元扩散动力学数据库建立与完善方面的工作。最后,介绍了扩散动力学数据库在微观组织模拟、合金设计等领域的应用,并对扩散动力学数据库的完善及应用方面的发展进行了展望。
关键词:
高温合金是应用在873 K以上高温环境中,能长期承受较大复杂应力且保持表面稳定的金属材料。此类合金具有优异的组织稳定性、抗氧化性能及抗热腐蚀性能,兼具良好的高温强度、抗疲劳、耐磨损及抗蠕变性能[1]。高温合金被广泛用于制备航空航天、船舶及汽车发动机中高温部件以及原子能工业和石油化工业中耐高温耐腐蚀部件,占半数以上(55%)的高温合金被用于制造航空发动机,如燃料室、涡轮等热端部件[2]。高温合金的性能决定了涡轮前温度的上限,也是航空发动机代际划分的重要依据。
目前,镍基高温合金是高温合金中品类最多、应用最为广泛的合金体系,约占高温合金牌号总量的80%[3]。Ni-Al二元体系是镍基高温合金中最重要的体系,其微观组织由γ相(fcc结构的Ni)与稳定的金属间化合物γ'相(L12结构的Ni3Al)组成[4]。经过合理的成分设计与工艺优化,镍基高温合金的承温能力、力学性能、抗蠕变性能及抗氧化性能均得到显著提升[5,6]。目前为止,第六代镍基单晶高温合金TMS-238展现出了优异的抗蠕变性能与抗氧化性能,且其承温能力接近于1390 K,已接近镍基高温合金的理论极限温度(1473 K)[7,8]。综上,具有优异承温能力、高温力学性能及抗氧化性能的新一代高温合金体系的开发是高温合金研究领域亟待解决的关键课题之一。
目前,使用温度超过1473 K、潜在的新一代高温合金体系主要有3种:钴基合金、Nb-Si基合金和难熔高熵合金(RHEAs)[8~11]。
钴基高温合金的发展可分为2个阶段。第一阶段可追溯至20世纪30年代,即传统钴基高温合金发展阶段,其强化机制为固溶强化与碳化物析出强化。传统钴基高温合金具有优异的抗热腐蚀性能、抗蠕变性能以及焊接性能等,但其高温强度显著低于存在稳定L12强化相的镍基高温合金[1]。第二阶段始于2006年,Sato等[11]研究了具有fcc-Co (γ相) +L12-Co3(Al, W) (γ'相)两相结构的新型钴基高温合金(Co-Al-W与Co-Al-Re合金),与传统钴基高温合金相比,新型钴基高温合金的强化是通过沉淀析出的共格γ'强化相实现的,从而使其高温强度更为优异。另外,新型钴基高温合金的凝固区间更窄、热加工窗口更宽,从而保证了其良好的凝固特性和热加工性能[1,11]。
目前,与主流镍基高温合金相比,新型钴基高温合金在组织稳定性、高温力学性能及抗氧化性能上依旧存在差距,具体表现如下。(1)L12相的稳定性:研究[12]表明,γ'-Co3(Al, W)在热力学上属于亚稳相,在特定温度下长时间保温后,可分解为Co3W等物相,且Co-Al-W三元体系中γ'-Co3(Al, W)相溶解温度(约1300 K)远低于镍基高温合金的γ'相溶解温度(> 1600 K);(2) 高温力学性能(如强度、蠕变等):虽然相较于传统钴基高温合金,γ'相增强的Co-Al-W合金的高温力学性能已有明显提升,但其依旧低于镍基高温合金[13];(3) 抗氧化性能:连续致密的Al2O3薄膜的形成是Co-Al-W合金优异抗氧化性能的保证。当温度高于1173 K后,由于Co的氧化物(如CoO、Co3O4等)的形成,破坏了Al2O3薄膜的致密性,导致合金丧失抗氧化能力[14]。除了Co-Al-W基合金体系以外,Co-Ti基也是新型钴基高温合金中的重要体系。Co-Ti基高温合金的密度为8~9 g/cm3,与镍基高温合金的密度相当,但γ'-Co3Ti相的稳定温度较低,且合金化元素在γ'-Co3Ti中溶解度过低,限制了Co-Ti基高温合金的改性与应用[15]。为了改善新型钴基高温合金的高温力学性能和抗氧化性能,在保留γ/γ'两相结构的前提下,合理添加合金化元素是重要手段,常见的合金化元素包括Al、Cr、Ni、Ta、Ti、W、B等。表1[16~26]总结了各合金化元素对钴基高温合金性能的影响。
Table 1
为了缩短新型钴基与Nb-Si基高温合金的研发周期,降低新材料研发所需人力、时间及资源成本,提高新材料的研发成功率,计算材料学越来越多地应用于高温合金的研发。计算材料学以实验数据为基础,以热力学、动力学及物理性能数据库为信息载体,结合第一性原理计算、计算相图、相场模拟等计算方法,可深入探索合金的相变机理及微观组织演化规律,为合金的成分设计与工艺优化提供理论指导,大幅度降低新材料开发过程中的试错成本。研发新型钴基与Nb-Si基高温合金过程中,反映原子扩散行为的扩散动力学信息是实现合金设计、研究合金相变机理及微观组织演化规律的重要数据基础。然而,由于基础动力学数据的缺失,现有的动力学数据库难以满足新一代高温合金的材料设计需求。综上,为了保证合金设计的有效性和可靠性,新型钴基与Nb-Si基高温合金的扩散动力学研究必不可少。
1扩散动力学数据的测定与计算方法
1.1自扩散系数与杂质扩散系数
自扩散系数与杂质扩散系数用于表征溶质原子在理想或稀固溶体中的扩散行为。获得自扩散系数与杂质扩散系数的方法共有4种:实验测定法、半经验法、第一原理法和机器学习法(如表3所示)。其中,机器学习方法是以实验数据为基础,构建多维数学模型,因此其与半经验法具有相似的特性,且模型的计算精度更高。实验测定法是目前应用最为广泛的方法,常被用作评估其他3种方法预测结果准确性的参照。采用实验法测定扩散系数的流程基本一致,即采用宏观切片、显微切片、非放射性和核方法等获取浓度-距离曲线,结合Fick第二定律求解扩散系数,如图1[37~39]所示。虽然通过算法的改进(如向前仿真分析法),提高了数据采集及扩散系数的求解效率,但是实验所需的时间、设备及材料成本限制了实验方法的应用[40~42]。此外,扩散系数与晶体结构密切相关,而部分特定晶体结构的金属(如fcc-Ti、fcc-W等)无法稳定存在,尽管此类扩散系数(如fcc-Ti的自扩散系数
表33种自扩散系数与杂质扩散系数获取方法的对比
Table 3
图1
Fig.1Flow chart for obtaining diffusion coefficients based on experimental methods[37-39](T0—diffusion temperature,x—distance,t—diffusion time,D*—tracer diffusion coefficient,c—element concentration,S—mass per unit area of the diffusing material)
随着扩散系数实验数据的积累以及扩散机理研究的深入,基于能量变化的角度,人们逐步构建了具有广泛适用性的半经验模型[43~47]。基于Arrhenius公式,自扩散系数与杂质扩散系数可采用频率因子(D0)和扩散激活能(Q)进行描述。为了进一步简化模型,本文作者课题组在前人研究成果[45,48]基础上,进一步研究了D0与晶体结构、原子扩散方向以及Q之间的相关性,构建了如
式中,a是晶格参数,κ是反映不同方向上扩散速率差异的偏差因子,NA是Avogadro常数(6.022 × 1023mol-1),h是Planck常数(6.63 × 10-34J·s)。
半经验模型以常规物理性能(如熔点、弹性模量等)为基础,预测了自扩散激活能(Qs)与杂质扩散激活能(QI)。最广泛使用的Qs预测模型基于熔点的线性回归形式。预测QI时,常将其分为空位迁移能(Hm)、空位形成能(Hf)和空位与相邻原子交换的活化能(Hi)。其中,Hi可采用五频模型描述为5种不同原子与空位交换所需要能量之和[41,50]。基于构建模型所采用的物理参数不同,可将QI预测模型分为热力学模型[47,51]与静电模型[52]。由于半经验模型中考虑的影响因素有限,故模型预测精度有限,即仅在特定体系中模型的预测结果与实验数据显示出较好的一致性。热力学模型被广泛应用于贵金属、难熔bcc金属和铅基合金体系[47,51,53,54],静电模型则被用于铜基、银基和金基合金体系[52,55,56]。
随着计算机技术的发展,第一性原理方法已经取代半经验模型法,成为预测自扩散系数与杂质扩散系数的主要方法。与半经验模型法类似,通过第一性原理的方法分别计算Hm、Hf和Hi,最终成功预测了不同物相中的Qs[57]及铝基、铜基、镍基、铌基、镁基和锆基合金中QI[58~63]。根据势函数的选择以及内层电子的处理方法,第一性原理方法可分为全电子法与赝势法。采用不同的计算方法,所得预测结果的精准度不同。全电子法计算结果准确,但计算量过大。赝势法虽然有效地降低了计算量,但计算结果会因赝势函数的选择而变化,此外,计算过程中还会遇到赝势函数缺失、收敛困难等问题。这些均限制了第一性原理法在预测扩散系数方面的应用。
为了实现模型的预测精准度及使用效率的统一,深入发掘数据间的内在联系,机器学习方法亦被用于预测扩散系数。数据与算法是影响基于机器学习方法所构建模型的重要因素。为了提高模型的训练效率及通用性,在数据收集及筛选时应具有较强的相关性、明确的物理意义及易获取等特点。算法选择时,应同时兼顾模型的预测精准度及可解释性。研究者[64~67]基于不同的数据集和机器学习算法构建了自扩散系数与杂质扩散系数的模型,虽然数据集与机器学习算法存在差异,但机器学习构建的流程基本一致,如图2[67]所示。
图2
图2基于机器学习算法构建固溶体相扩散数据预测模型的流程图[67]
Fig.2Flow diagram of the implementation of machine-learning for predicting the diffusion coefficients in bcc, fcc, and hcp phases[67](R—gas constant,T—temperature,D—diffusion coefficient)
整个过程可以分为2个部分:(1) 数据集的建立与数据的预处理。以空位扩散机制与相关经验公式为基础,选取一系列影响自扩散系数与杂质扩散系数的物理参数作为自变量,选取Q作为因变量。通过收集、整理(如数据清洗、归一化处理等操作)上述参数,实现机器学习预测模型数据集的建立;(2) 预测模型的建立、评估及优化。将数据集中数据按照4∶1的比例分成训练集与测试集。训练集被用于模型的训练,训练过程中采用k折交叉验证法对机器学习模型中的参数进行优化。测试集被用于训练后模型的验证,而模型的性能则采用决定系数(R2)、平均绝对误差(MAE)等参数进行评估。采用不同机器学习算法及自变量进行建模,通过对比模型性能的优劣,筛选出结构简单且性能最佳的预测模型。最终,基于最优模型实现自扩散系数与杂质扩散系数的计算。
1.2多组元体系中的互扩散系数
多组元合金体系中,Fick第一定律与Fick第二定律依旧适用,考虑到体系中各组元的扩散驱动力为化学势梯度,而非浓度梯度,因此Fick第一定律可转变成如下形式[68]:
式中,k、i、j代表不同的元素,Jk为组元k的扩散通量,
为了实现由n+ 1个组元组成的多元合金中原子扩散行为的描述,需采用n×n的扩散矩阵
综上,为了实现多组元合金中原子扩散行为的表述,互扩散系数的测定与计算具有重要意义。
1.2.1 基于扩散偶的互扩散系数的测定
扩散偶技术是实现多元合金中扩散研究的一种重要工具。Matano[69]将Boltzmann方程引入到Fick第二定律之中,建立了互扩散系数与成分之间的关系式:
式中,t为扩散时间,c为浓度。由
二元合金体系中,基于扩散偶的互扩散系数的计算方法主要为den Broeder方法。该方法将元素浓度进行了归一化处理,即Y= (c-c-∞) / (c+∞-c-∞)。其中,Y为归一化浓度,c-∞和c+∞为扩散偶两端非扩散区中元素的成分含量。由此,
三元合金体系中计算互扩散系数主要采用Whittle-Green方法,该方法与den Broeder方法类似,均是对Boltzmann-Matano方程中浓度进行了归一化处理。
由于三元体系中组元数目的增加,Boltzmann-Matano方程的表现形式略有不同,如下式所示[69]:
式中,A、B和C代表组成合金体系的不同组元,而i可代表B或C组元,由此
将
式中,
由
为了提高互扩散系数的计算效率,Chen等[73]和Zhong等[74]通过对算法进行改进,开发出了基于数值反演方法的HitDIC (high-throughput determination of interdiffusion coefficients)软件。数值反演方法中,互扩散系数可表示为如下式所示的热力学因子与空位浓度相关的Manning随机合金模型(Manning's random alloy model)组成的函数形式[73,74]:
式中,R为气体常数;T为温度;i和j均可表示为元素B或C;m可表示为元素A、B和C;M是特定元素的原子迁移率;φ是热力学因子;s是一个常数,用于表示模型中是否考虑空位流效应的影响(s= 0表示考虑该效应影响,而s= 1时表示不考虑);A0是晶体结构因子(bcc结构时,A0= 5.33)。
根据绝对反应速率理论(absolute rate theory),元素i的原子迁移率Mi可以表示为动力学相互作用参数的函数[73,74]:
式中,
结合Fick第二定律所构建的互扩散系数与浓度之间的关系,通过给
式中,N代表距离-浓度曲线中实验测定点的总数量;n'代表第n'个数据点;
可见,与基于Boltzmann-Matano方程的互扩散系数计算方法相比,数值反演方法仅需要一对扩散偶,即可实现该扩散偶距离-浓度曲线上任意位置的互扩散系数的计算,其效率得到显著提高[73,74]。基于数值反演方法以及HitDIC软件,Zhong等[75]和Liu等[76]实现了镍基高温合金及AlCoCrFeNi高熵合金中互扩散系数的测定以及扩散动力学数据库的建立。
化合物相也是高温合金体系中的重要组成部分,其互扩散系数的测定也是高温合金扩散动力学研究中的关键内容。如图1[37~39]所示,化合物相互扩散系数的测定是以多相浓度-距离曲线为基础,采用Heumann-Matano方程求解,从而获得化合物相的平均扩散系数[77]:
式中,DII代表组元在化合物II相的平均扩散系数;d为化合物II相的厚度;cII?I和cII?III分别代表化合物II相与相邻I相、III相边界处的浓度。
利用上述方法,Fitzer和Schmidt[78]基于NbSi2/Nb扩散偶测定了Si在Nb5Si3中扩散系数,得出在700~1700℃的温度范围内,平均扩散系数为5.1 × 10-7exp(-48 / (RT)) m2/s。
1.2.2 基于分子动力学方法的示踪扩散系数的计算
互扩散系数一般反映了原子在存在浓度梯度的体系中的扩散行为,示踪扩散系数则反映了原子在成分均匀的体系中的扩散行为。结合
式中,δik为Kronecker函数,Vi为i组元的偏摩尔体积,
由于固相中原子的扩散是通过扩散原子与相邻空位换位实现的,因此分子动力学建模过程中需考虑空位浓度以保证扩散的顺利进行。一般情况下,固相金属中空位平衡浓度(CVE)过低,若要模拟真实状态下的金属空位浓度,模型中原子数量需达到百万个以上。为了限制模型中原子的数量,模型建立过程中需设置一个远大于实际的空位浓度(CV)。为了修正由体系中空位浓度差异所导致的计算结果偏差,最终分子动力学计算的
式中,CVE则可表示为空位形成能及原子-空位结合能的函数。基于分子动力学方法、相关经验势函数、
此外,反映分子间相互作用的势函数也是影响分子动力学计算结果的关键因素。第一性原理分子动力学方法将密度泛函理论和分子动力学方法相结合,保证了计算结果的精度,但是计算效率过低,模型中原子数量不宜过多。采用传统经验势函数的分子动力学计算效率虽然得到显著提升,但计算结果的精度也随之下降。为了兼顾势函数的精度及其计算效率,Huang等[83]采用机器学习方法结合动力学Monte Carlo方法(ANN-KMC)及分子动力学方法实现了不同温度下Ni1 -xFex合金中扩散系数的计算。
2新型钴基与Nb-Si基高温合金扩散动力学数据库的研究进展
2.1新型钴基高温合金扩散动力学数据库
新型钴基高温合金的高温力学性能源于γ'相(L12结构)的形成,而γ'相的稳定性、尺寸、分布及其与基体γ相(fcc结构)之间的错配度等,均会对新型钴基高温合金的综合性能产生影响。改善新型钴基高温合金综合性能的主要手段为合金化,常用的合金化元素包含Co、Ni、Al、W、Cr、Ta、Ti等。不同的合金化元素在γ与γ'相中的扩散速率不同,从而对γ'相的析出长大过程产生显著影响。因此,新型钴基高温合金动力学数据库中一般包含元素在固溶体fcc相和金属间化合物L12相中的扩散信息。
新型钴基高温合金常用的合金化元素中仅部分元素(如Co、Ni、Al等)以fcc结构稳定存在,其所对应的自扩散系数可采用同位素示踪法进行测定,而其他元素所对应的自扩散系数只能通过经验公式进行预估[37]。同样,与自扩散系数的实验测定方法类似,杂质扩散系数的实验测定方法亦受到晶体结构稳定性的影响。如表3所示,合金体系中涉及的自扩散系数与杂质扩散系数的总量超过15000,若采用实验方法测定,效率低且成本高。因此,除部分关键且可测定体系以外,大部分合金体系并未对相关自扩散系数与杂质扩散系数进行测定。因此,动力学数据库中对应的自扩散迁移率参数与杂质扩散迁移率参数并未进行合理优化。针对此问题,本课题组[67,84]将机器学习方法与扩散动力学相结合,基于已有数据,采用机器学习方法结合
图3
图3杂质扩散激活能(QI)预测模型中自变量的重要性排序,以及最优机器学习模型计算的自扩散激活能(Qs)、QI与实验结果的对比[67,84]
Fig.3Ranking of the importance of features in the impurity diffusion activation energy (QI) machine learning model (a)[67], and comparisons among the results calculated by the self-diffusion activation energy (Qs) (b)[84]andQI(c)[67]machine learning models and experimental measurements (The features were classified as follows, 1) Electron configuration: numbers of electrons in closed-shell and s-, p-, d-, and f-orbits (CEC,Ns,Np,Nd,Nf); 2) Atomic properties: atomic radius (AR), atomic mass (AM), and electronegativity (EN); 3) Lattice parameters (includinga,c, andγ) and atomic coordinate number (Z); 4)Cij; 5)Tm. The superscripts of the features M, I, Δ, and R denote matrix, impurity, matrix-impurity, and matrix/impurity, respectively)
该方案具体内容如下:基于极限树回归算法(ETR)与梯度提升回归算法(GBR)构建了基于基本物理性能(原子特性、晶胞参数、弹性常数及熔点)的自扩散激治能及杂质扩散激活能的预测模型。同时,基于树的模型重要性分析结果定量阐述了扩散激活能的影响因素,在保证模型性能的前提下,保留了模型的可解释性。最后,基于构建的机器学习模型计算了元素在稳定与亚稳定固溶体相(bcc、fcc和hcp)中222组自扩散数据和16206组杂质扩散数据[67]。基于上述结果,本文作者课题组[85]采用DICTRA软件优化了Co、Ni、Al、Cr、Ti等元素在fcc相中的自扩散迁移率参数与杂质扩散迁移率参数,部分优化结果列于表4[85~91]之中。
表4新型钴基高温合金中fcc相与Nb-Si基高温合金中bcc相的自扩散迁移率参数与杂质扩散迁移率参数的部分优化结果[85~91]
Table 4
由于自扩散系数与杂质扩散系数仅反映了由原子热振动所引起的扩散,而合金中组元浓度梯度的存在也会对原子的扩散产生影响。因此,与成分相关的示踪扩散系数或互扩散系数是影响动力学数据库精度的关键数据。为了进一步提高新型钴基高温合金动力学数据库的精度,使其满足高温合金设计与研发的需求,本课题组[92~96]采用基于Boltzmann-Matano方程衍生的各种计算方法对Co-Cr-Mo、Ni-Cr-W等多个关键体系的互扩散系数进行了测定,并研究了元素在fcc相中的扩散行为(如图4[92~94]所示)。实验结果表明:fcc Ni-Co-Al体系中,Al的扩散速率高于Co;fcc Co-Cr-Mo体系中,Cr、Mo的扩散速率相近;fcc Ni-Mo-Ta体系中,Ta的扩散速率高于Mo。
图4
图4Ni-Co-Al合金中扩散偶在1373 K保温259200 s[92],Co-Cr-Mo合金中扩散偶在1473 K保温259200 s[93],Ni-Mo-Ta合金中扩散偶在1473 K保温259200 s[94],以及Ni-Mo-Ta合金中扩散偶在1573 K保温172800 s后[94]的扩散路径计算结果和实验数据的对比
Fig.4Comparisons between the experimental and DICTRA-simulated diffusion paths for various diffusion couples
(a) Ni-Co-Al alloy annealed at 1373 K for 259200 s[92]
(b) Co-Cr-Mo alloy annealed at 1473 K for 259200 s[93]
(c) Ni-Mo-Ta alloy annealed at 1473 K for 259200 s[94]
(d) Ni-Mo-Ta alloy annealed at 1573 K for 172800 s[94]
除了采用实验方法获得二元和三元体系在固溶体中的互扩散系数,本文作者课题组[85]还采用分子动力学方法对Co-Ti、Co-Ti-Al、Co-Ti-Cr、Co-Ti-Ni和Ti-Al-Ni体系在fcc相与L12相中原子的扩散行为进行了研究。图5[85]以fcc Co-Ti-Ni体系为例,展示了具体的计算流程:第一步,优化经验势函数;第二步,计算平衡空位浓度;第三步,计算各元素在不同成分体系中均方根位移随时间变化的曲线;第四步,基于
图5
图5Co、Ti与Ni原子在不同合金中的均方位移(MSD)随时间的变化曲线,以及不同温度下Co-Ti-Ni三元系fcc相中示踪扩散系数的计算结果与分子动力学计算结果的对比图,随成分变化的示踪扩散系数
Fig.5Time-dependent mean square displacement (MSD) of Co, Ti, and Ni in alloys with different compositions (a), comparisons of tracer diffusion coefficients calculated using kinetic database and molecular dynamic method (b), and tracer diffusion coefficient
综合采用不同方法计算得到的动力学数据,本文作者课题组[85]建立了Co-Ni-Al-Cr-Ti体系fcc相和L12相的多元扩散动力学数据库。该数据库中包含了5个纯组元、10个二元系及10个三元系。
2.2 Nb-Si基高温合金扩散动力学数据库
Nb-Si基高温合金扩散动力学数据库的建立流程与新型钴基高温合金扩散动力学数据库的建立流程基本一致。Nb-Si基高温合金中的主要物相为bcc相和硅化物相,目前对于扩散动力学的研究集中于bcc相,硅化物的扩散动力学研究相当有限,因此数据库中不包含硅化物的扩散信息。Nb-Si基高温合金常用的合金化元素中仅部分元素(如Nb、Cr、Ti等)以bcc结构稳定存在,其所对应的自扩散系数可采用同位素示踪法进行测定。针对无法以bcc结构稳定存在的体系中自扩散与杂质扩散数据的获取,本课题组[85]采用经验模型与机器学习预测模型实现了相关扩散数据的计算。基于上述计算结果,结合文献报道的相关扩散数据,本课题组采用DICTRA软件对Nb、Si、Ti、Hf、V等元素在bcc相中的自扩散迁移率参数与杂质扩散迁移率参数进行了优化,部分优化结果列于表4[85~91]之中。
对于Nb-Si基高温合金,本课题组[85,97]以分子动力学方法和基于扩散偶的实验方法获取的扩散数据为基础,实现了扩散动力学数据库中各二元系、三元系的扩散相互作用参数的优化。综合采用不同方法计算得到的动力学数据,建立了Nb-Si-Hf-Ti-V体系bcc相的多元扩散动力学数据库[85]。该数据库中包含了5个纯组元、10个二元系及10个三元系。
3扩散动力学数据库的应用
高温合金的断裂韧性、强度、抗蠕变性能等力学性能与合金微观组织密切相关。新型钴基高温合金热处理过程中γ'相的尺寸与分布情况、Nb-Si基高温合金凝固过程中成分的偏聚情况等微观组织信息成为设计新型高温合金的关键。采用TC-PRISMA、Pandat等软件,以热力学和动力学数据库为基础,结合不同物理模型,可实现合金在凝固、热处理等过程中微观组织特性的计算[98]。
王杨[99]基于自建的Ni-Co-Al-Mo-W体系的热力学与fcc相动力学数据库,采用Thermo-Calc软件中析出模块(TC-PRISMA),模拟了Co-9.3Al-7.4W (原子分数,%)合金中γ'相在1173 K的形核、长大与粗化过程,其模拟结果与Azzam等[100]的实验结果具有良好的一致性。基于明确的γ'相晶粒尺寸与热处理温度、时间的关系,为优化新型钴基高温合金的热处理工艺提供了理论指导。
Wang等[101]基于TCHEA2热力学数据库与MOBNI4动力学数据库,采用DICTRA软件模拟了Co-Cr、Co-Cr-Mn-Ni、Co-Cr-Fe-Ni及Co-Cr-Fe-Mn-Ni合金铸造过程中的成分偏析情况,计算结果表明上述合金在1473 K时效175 h后即可保证合金成分的均匀性。
本课题组[85]基于自建的新型钴基与Nb-Si基高温合金热力学与动力学数据库,采用Pandat软件研究了合金成分和冷却速率对Co-Ti-X(X:Al、Cr、Ni)与Nb-Si-X(X:Hf、Ti、V)合金在凝固过程中裂纹形成倾向的影响,为新型钴基与Nb-Si基高温合金的成分及凝固工艺的设计提供了参考(如图6[85]所示)。基于计算结果可知,为了降低钴基高温合金凝固过程中裂纹形成的倾向,可通过降低Ni的含量、控制Ti (< 17%,原子分数,下同)、Al (6%~12%)、Cr (9%~15%)的含量或提高冷却速率实现,而Nb-Si基高温合金中可通过降低Si的含量、增加Hf、Ti、V的含量或提高冷却速率实现。基于上述计算结果,通过调整成分设计与冷却速率可以避免高温合金凝固过程中裂纹、孔洞的形成。
图6
图6不同冷却速率下Co-Ti-Al和Ni-Si-Hf三元系合金热裂敏感性系数随成分变化的分布[85]
Fig.6Distributions of the crack susceptibility coefficient with compositions for Co-Ti-Al (a-c), Ni-Si-Hf (d-f) ternary alloys at cooling rates of 10 K/s (a, d), 100 K/s (b, e), and 1000 K/s (c, f)[85](LN (CSC) indicates the logarithm of the thermal crack sensitivity coefficient, the higher the value, the stronger the tendency to produce thermal cracks)
除了直接使用DICTRA与TC-PRISMA进行凝固、析出等过程的模拟计算,扩散动力学数据库还耦合第三方软件(如MICRESS等),从而实现基于相场动力学模型的微观组织演化模拟[102]。该模型由Cahn-Hilliard 模型与Allen-Cahn 模型组成,反映了保守场(如化学浓度)与非保守场(如晶体取向、长程有序、晶体结构)随时间、空间的变化。耦合热力学与动力学数据库,则可实现模型所需关键参数(如迁移率参数及相变驱动力等)的计算[103,104]。
由于相场法具有可靠的物理背景,保证了模拟的微观组织演化过程的可靠性。通过与温度场、弹性场等多物理场以及热力学与动力学数据库的耦合,以及自适应网格、并行计算等技术的应用,大幅度提高了相场法的适用范围与计算效率。至此,采用相场法模拟真实时空中合金相变过程(如凝固、热处理、再结晶等)的技术逐步成熟,并被应用于辅助新材料的合金设计及材料制备过程中物理现象的理论分析[103]。
相场法在新型钴基高温合金中的应用集中在γ'相的析出、长大及筏化过程。Shi等[105]模拟了Co-9Al-8W (原子分数,%)合金在1023~1173 K等温时效过程中γ'相的演化过程。该过程可分为3个阶段:γ'相形核阶段、生长阶段和粗化阶段。γ'相生长行为与trans-interface diffusion-controlled (TIDC)模型相符合,而其粗化规律与传统Lifshitz-Slyozov-Wagner (LSW)模型更为符合。Chen等[106]与本课题组[107]亦针对Co-Al-W合金高温时效过程中γ'相的粗化行为进行了模拟研究(如图7[107]所示)。前者的研究表明合金中γ'相体积分数与其粗化速率呈正比例关系;后者研究了D019相的形成对γ'相粗化过程的影响,研究结果表明γ'相粗化规律与modified Lifshitz-Slyozov-Wagner (MLSW)模型更为符合[106,107]。除了γ'相粗化行为,新型钴基高温合金的高温筏化行为也是该领域研究的一个重点。Wang等[108]模拟了Co-9Al-7.5W-2Ta (原子分数,%)合金在1273 K、150 MPa蠕变条件下的筏化行为。基于上述模型,通过高通量模拟计算,可建立合金成分与蠕变性能之间的关系,并筛选出具有优异抗蠕变性能的钴基高温合金。
图7
图7相场法模拟的Co-9Al-9W合金在900℃经过不同时效时间后Al与W的浓度分布[107]
Fig.7Al (a-c) and W (d-f) concentration distributions in Co-9Al-9W alloy aged at 900oC for 10 h (a, d), 50 h (b, e), and 100 h (c, f) as simulated by phase-field method[107]
综上所述,基于相场法的微观组织模拟,通过与温度场、弹性场等多物理场以及相关体系的热力学与动力学数据库的耦合,可实现对真实新型钴基与Nb-Si基高温合金体系在复杂工艺条件下微观组织演化过程的模拟,保证了模拟结果与实验结果的一致性。但是,基于相场法的微观组织模拟结果的可靠性严重依赖于相关合金体系的热力学、动力学及物理性能参数的准确性,且相场模型构建过程的复杂性限制了其在新型钴基与Nb-Si基高温合金材料设计中的广泛应用。
4结论与展望
为了实现新型钴基和Nb-Si基高温合金的材料设计,提高合金的综合性能,研究相变行为及微观组织演化规律具有重要意义,而精准的热力学、动力学及物理性能数据库则是开展相关研究的重要依据。由于基础动力学数据的缺失,现有扩散动力学数据库的精度无法满足相变、微观组织研究的需求。因此,新型钴基和Nb-Si基高温合金扩散动力学数据库的建立与完善是这2类高温合金材料设计与研发过程中的重要研究内容。为了高效地构建完善且高精度的扩散动力学数据库,高通量的实验测定方法与机器学习、第一性原理、分子动力学等计算方法逐步成为扩散动力学研究的主要方法。同时,扩散动力学数据的应用也逐步多样化,扩散动力学的数据库与相关热力学、物理性能参数及物理模型相结合,可实现对高温合金微观组织演化过程的定量模拟,以及对成分-工艺-组织结构-性能之间关系的系统分析,使之成为指导新型钴基和Nb-Si基高温合金材料设计,加快新型材料研发的重要手段。
今后的高温合金扩散动力学研究工作可以从如下几个方面开展。
(1) 扩散动力学数据库的进一步完善。目前,高温合金体系中扩散行为的研究主要集中于固溶体相(fcc、bcc与hcp),而对合金性能产生重要影响的化合物相(如L12、Nb5Si3相等)的扩散行为研究极度缺乏。随着原位显微镜技术、化合物相扩散理论的发展,化合物相中扩散行为的研究有待进一步深入。
(2) 分子动力学方法在扩散系数计算上的应用。由于传统经验势函数模型精度较差,采用分子动力学方法计算的扩散系数存在较大偏差。随着机器学习原子间势函数的兴起,保证了分子动力学方法计算过程的高效性及计算结果的准确性,促进了分子动力学方法在材料性能预测方面的应用。
(3) 扩散动力学数据库应用的拓展。扩散动力学数据库与热力学数据库、物理性能数据库共同使用,耦合相场、温度场、流体场等多物理场,可真实、直观地展示相变与组织演变过程,为材料的开发、工艺的优化提供更为可靠的理论支持。
来源--金属学报