分享:Cr添加对孪生诱发塑性钢腐蚀行为的影响
司永礼1,2, 薛金涛1,2, 王幸福1, 梁驹华1, 史子木1, 韩福生,1
1
2
通过动电位极化曲线、电化学阻抗谱(EIS)测试和X射线光电子能谱(XPS)分析等研究了Cr添加对Fe-25Mn-xCr-0.3C (x = 0、3、6、9、12,质量分数,%)孪生诱发塑性(TWIP)钢腐蚀行为的影响。结果表明,TWIP钢基体中Cr含量增加导致腐蚀电位显著增加和腐蚀电流密度明显降低。耐腐蚀性能改善还通过Nyquist图中电荷转移电阻随着Cr含量的增加而增加得到证实。XPS结果表明,准钝化膜由FeO、Fe2O3、FeOOH、MnO、MnO2、Cr2O3和Cr(OH)3等组成,并且随着Cr含量增加,Cr氧化物在最外层氧化物中逐渐富集,同时Fe氧化物和Mn氧化物逐渐减少。正是这种保护性Cr氧化膜提高了TWIP钢的耐腐蚀性能。
关键词:
高锰奥氏体Fe-Mn-C孪生诱发塑性(TWIP)钢由于具有低密度、高强度和高延展性等优异的力学性能,在过去十余年越来越受到汽车和钢铁行业的关注[1~7]。这些特性使TWIP钢在许多工业领域具有潜在的应用前景,诸如,汽车中的轻质结构、高速列车中的冲击保护结构等[8~12]。尽管TWIP钢具有出色的强度和延展性,但其耐腐蚀性能较差,尤其是在水性溶液介质中更是如此[3,13~16],这极大地影响了TWIP钢的性能、限制了TWIP钢的应用。因此,提高耐腐蚀性能一直是TWIP钢的重要的研究热点之一。迄今为止,已有一些关于TWIP钢腐蚀机理和耐腐蚀技术的报道,如晶界工程[17,18]、热浸镀锌/铝[19,20]、Cr合金化或降低C含量[14,21~24]等。
Tuan等[14]发现在3.5%NaCl (质量分数)溶液中,淬火态Fe-30Mn-7Al-xCr-1C (x = 3、6、9,质量分数,%,下同) TWIP 钢出现钝化现象,并且当Cr含量增加到6% (质量分数,下同)时,TWIP钢的腐蚀电位(Ecorr)和点蚀电位(Epp)具有最佳值。Xu等[23,24]指出在X65钢中添加3.0%~6.5%的Cr可以在CO2环境中形成钝化膜。Ha等[25]发现在Fe-23Cr合金中添加Mn会导致耐腐蚀性能降低,因为在含有Cl-的溶液中添加Mn会降低点蚀电位和再钝化电位。
考虑到在TWIP钢中添加较高含量的C不仅不利于延展性,而且会导致对耐腐蚀性能有害的碳化物析出[26]。因此,本工作中TWIP钢的C含量控制在0.3%左右。Cr是提高TWIP钢耐腐蚀性能的至关重要的合金元素。众所周知,Cr的电极电位比Mn的更正,其中,Cr的标准还原电位为
1 实验方法
1.1 样品制备
在真空电弧熔炼炉中使用高纯Fe (99.95%)、Mn (99.8%)、Cr (99.95%)和C (99.999%)制备Fe-25Mn-xCr-0.3C (x = 0、3、6、9、12) TWIP钢。在Ar气氛保护下,铸锭至少熔化3次以使合金成分更均匀,最后在铜模中浇铸成纽扣状样品。采用OBLF QSN750-Ⅱ直读光谱仪对试样进行成分分析,主要成分见表1。样品在Ar气氛保护下1200℃固溶2 h,然后水淬。
表1 孪生诱发塑性(TWIP)钢样品主要化学成分 (mass fraction / %)
Table 1
Sample | C | Mn | Cr | Si | Ni | Mo | Ti | Fe |
---|---|---|---|---|---|---|---|---|
0Cr | 0.304 | 24.49 | 0.02 | 0.001 | 0.018 | 0.001 | 0.006 | Bal. |
3Cr | 0.294 | 24.39 | 3.07 | 0.001 | 0.020 | 0.001 | 0.006 | Bal. |
6Cr | 0.299 | 24.22 | 5.93 | 0.001 | 0.018 | 0.001 | 0.005 | Bal. |
9Cr | 0.302 | 24.46 | 8.37 | 0.001 | 0.020 | 0.001 | 0.006 | Bal. |
12Cr | 0.303 | 24.83 | 11.33 | 0.001 | 0.018 | 0.001 | 0.006 | Bal. |
1.2 组织表征
利用X'Pert Pro MPD X射线衍射仪(XRD)使用CuKα 射线在室温下以0.03349°的步长、20°~100°的扫描角分析样品物相组成。样品经研磨抛光后,使用100 mL C2H5OH、3 g苦味酸和5 mL HCl的混合溶液作为金相腐蚀剂腐蚀金相。使用AXIO光学显微镜(OM)和SU8020场发射扫描电子显微镜(FE-SEM)观察恒电位极化测试后样品的表面腐蚀形貌。
1.3 电化学测试
电化学测试使用三电极体系,在500 mL含3.5%NaCl水溶液中进行。电解质溶液使用试剂级NaCl和去离子水制备。TWIP钢样品用作工作电极,工作电极面积为0.75 cm2,Pt丝作为对电极,饱和甘汞电极(SCE)用作参比电极。从纽扣状样品的中心切下直径为15 mm、厚度为3 mm的TWIP钢样品,用砂纸打磨至3000号后,装入电化学夹具中进行相关电化学测试。
工作电极在NaCl溶液中浸泡0.5 h达到稳定后,在开路电位-0.5~+1.25 V、扫描速率1.667 mV/s下进行动电位极化测试。每种样品的极化测试至少重复3次,直到达到稳定值。
电化学阻抗谱(EIS)在100 kHz~0.05 Hz的频率范围内,以5 mV的正弦波振幅频率测量。EIS数据通过ZSimpWin软件进行拟合和分析。
1.4 X射线光电子能谱
在-0.1 V (vs SCE)电位下恒电位极化60 min后,利用Thermo ESCALAB 250Xi X射线光电子能谱仪(XPS)分析样品表层的腐蚀产物。XPS测量使用AlKα X射线源(150 W、30 eV、能量hυ = 1486.6 eV)。腐蚀产物和准保护膜的高分辨能谱(Fe2p、Mn2p、Cr2p和O1s)由XPSPEAK 4.1软件和在线数据库[28]处理。根据参照峰C1s峰结合能(284.6 eV)进行校准。
2 实验结果与讨论
2.1 相组成
图1显示了TWIP钢样品的XRD谱。除了γ奥氏体峰外,样品中没有发现其他物相峰,表明即使在Cr含量高达12%时,TWIP钢仍具有稳定的奥氏体组织。
图1
图1 不同Cr含量TWIP钢样品的XRD谱
Fig.1 XRD spectra of TWIP steel samples with different Cr contents
12Cr样品显微组织的OM像如图2所示。对所有样品(0Cr~12Cr)的金相组织进行了观察,均未发现除奥氏体以外的其他组织。Cr是铁素体形成元素,高锰奥氏体TWIP钢中随着Cr元素添加量的增加可能导致基体组织中产生除奥氏体以外的其他组织。本工作表明Cr含量高达12%时,Fe-Mn-Cr-C钢仍具有稳定的单相奥氏体组织。
图2
图2 12Cr样品显微组织的OM像
Fig.2 OM image of 12Cr sample
2.2 动电位极化响应
不同Cr含量的TWIP钢样品在3.5%NaCl溶液中的动电位极化曲线如图3所示。对应的Ecorr和腐蚀电流密度(icorr)数据列于表2中。从表2中可见,0Cr~12Cr样品的Ecorr分别为-818、-487、-468、-261和-223 mV,Ecorr随着Cr含量的增加呈现出正移的趋势。此外,有趣的是,随着Cr含量的增加,Ecorr的增加近于阶梯状,而不是均匀分布的。3Cr/6Cr试样和9Cr/12Cr试样可以看作是两组,每组的Ecorr接近,即每组具有相似的耐腐蚀性能。从表2还可以看出,随着Cr含量从0增加到12%,icorr从1.5810 × 10-6 A/cm2降低到0.0764 × 10-6 A/cm2,进一步证明了Cr添加对提升TWIP钢耐腐蚀性能的有效性。
图3
图3 不同Cr含量TWIP钢样品的动电位极化曲线
Fig.3 Potentiodynamic polarization curves of TWIP steel samples with different Cr contents (i—current density)
表2 基于动电位极化曲线的特征电化学参数
Table 2
Sample | Ecorr / mV | icorr / (10-6 A·cm-2) |
---|---|---|
0Cr | -818 | 1.5810 |
3Cr | -487 | 0.4701 |
6Cr | -468 | 0.4189 |
9Cr | -261 | 0.2244 |
12Cr | -223 | 0.0764 |
2.3 EIS表征活性溶解动力学
室温下TWIP钢在3.5%NaCl溶液中测得的Nyquist图如图4所示。5种TWIP钢样品观察到类似的容抗行为。在分析EIS数据之前,先使用ZSimWin软件根据Kramers-Kronig (K-K)转换评估实验阻抗数据的一致性[29]。K-K转换通过将实验数据与K-K转换后数据进行比较,作为实验结果可靠性的判断标准。通常K-K关系是具有实部和虚部的积分方程[29,30]:
图4
图4 室温下TWIP钢样品在3.5%NaCl溶液中的Nyquist图
Fig.4 Nyquist plots of TWIP steel samples in 3.5%NaCl solution at room temperature (a) and locally enlarged Nyquist spectra of 0Cr, 3Cr, and 6Cr samples in Fig.4a (b) (Z'—real part of the im-pedance, Z''—imaginary part of the impedance)
式中,ω是角频率,x (x > 0)是积分变量;Z′(ω)和Z″(ω)分别是阻抗的实部和虚部,Z′(0)和Z′(∞)是频率为0和∞时阻抗的实部。方程(1)和(2)将虚部转换为实部,方程(3) 将实部转换为虚部。比较实验阻抗图和K-K转换计算阻抗图,可以评估EIS测量的可靠性。
如图4所示,Nyquist曲线在高频区呈现出类似弧形的趋势。众所周知,容抗弧与原子溶解反应有关,并且容抗弧的直径取决于电荷转移电阻(Rct)[31,32]。从图4可以看出,尽管5种样品的Cr含量不同,但其Nyquist图的形状相似。在100 kHz~0.05 Hz的频率范围内,样品的EIS由压扁的半圆组成。随着Cr添加量从0增加到12%,高频区Nyquist图的半圆逐渐增大。Rct与腐蚀速率成反比,随着Cr含量的增加而显著增加。一般来说,容抗弧的直径越大,或者说Rct越大,材料的抗腐蚀性能越好[33]。样品容抗弧直径随着Cr含量的增加而增加的事实表明,高Cr添加量确实可以有效提高TWIP钢的耐腐蚀性能。
图5显示了室温下TWIP钢样品在3.5%NaCl溶液中的Bode图。在Bode相位角-频率图中,随着频率增加,相位角先升高直至达到最大值,然后再降低,表现出典型的容抗行为。最大相位角出现在60°~75°之间,随Cr含量变化而变化,但均小于90°。在低频区域,0Cr~12Cr样品相位角均有所下降,0.05 Hz附近随着基体中Cr含量增加,相位角增大,表明样品的腐蚀速率下降。9Cr/12Cr、3Cr/6Cr每组样品均具有相近的相位角,表明其有相近的腐蚀速率。此外,在高频区域,9Cr和12Cr样品的相位角重合,表明其具有相近的腐蚀速率。
图5
图5 室温下TWIP钢样品在3.5%NaCl溶液中的Bode图
Fig.5 Bode plots of TWIP steel samples in 3.5%NaCl solution at room temperature (|Z|—magnitude of the impedance)
在Bode阻抗-频率图的低频区域可以明显看出,阻抗模(|Z|)随着Cr含量增加而增加,表明样品的耐腐蚀性能随Cr含量增加得到改善。同样地,还观察到9Cr/12Cr、3Cr/6Cr每组样品具有相近的|Z|值,表明其有相近的耐腐蚀性能。图5的耐腐蚀性能分组与图3的动电位极化曲线结果一致。当频率超过1 × 103 Hz时,所有阻抗模量曲线变为水平线,成为独立于弛豫过程的电阻行为,该电阻行为通常被认为是溶液电阻(Rs)。从图4和5可知,实验测得的Rs在10~14 Ω·cm2之间。由于EIS测试条件相同,0Cr~12Cr样品的Rs基本相同。
图6和7分别给出了0Cr和12Cr样品EIS实验所得阻抗与K-K转换计算的阻抗之间的比较。除了在非常低频率下出现的微小偏差外,实验数据和K-K转换数据之间具有良好的一致性。这种微小偏差可能是由于在如此低频率下弛豫过程的不稳定性或EIS测试过程中出现的噪声。整体一致性证明了EIS实验的有效性。
图6
图6 0Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
Fig.6 Comparisons of experimental impedance and calculated impedance using K-K transforms for 0Cr sample in 3.5%NaCl solution
(a) Z' (b) -Z"
图7
图7 12Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
Fig.7 Comparisons of experimental impedance and calculated impedance using K-K transforms for 12Cr sample in 3.5%NaCl solution
(a) Z' (b) -Z"
为了对EIS数据进行拟合,引入了如图8所示的等效电路(EEC)模型。在该模型中,常相位角元件(CPE)代表双电层电容。CPE与Rct并联后与Rs串联。Rs是参比电极和工作电极之间的欧姆电阻。由CPE和Rct组成的次回路可能是由腐蚀过程产生的。CPE常用于分析腐蚀电极的非理想电容,其阻抗(ZCPE)由下式给出:
图8
图8 用于阻抗拟合的等效电路
Fig.8 Equivalent electrical circuit used to fit the impedance data of samples (CPE—constant phase angle element, Rs—solution resistance, Rct—charge transfer resistance)
式中,Y0是导纳(S·cm-2·s n );j是虚数,j2 = -1;n为无量纲分数指数(-1 < n < +1)。当n = +1、0、-1和0.5时,CPE分别是理想电容、电阻、电感和Warburg导纳[34,35]。
所提出EEC模型的总阻抗由以下传递函数给出:
使用图8中的等效电路 模型,在3.5%NaCl溶液中的5种样品的拟合电化学阻抗参数如表3所示。可见,拟合阻抗谱与实验测得阻抗谱拟合得比较好,每个参数的平均相对误差小于5%,拟合方差(χ2)在10-3数量级。
表3 基于EIS数据和图8模型的样品拟合结果
Table 3
Sample | Rs | Rs error | CPE | Rct | Rct error | χ2 | |||
---|---|---|---|---|---|---|---|---|---|
Ω·cm2 | % | Y0 / (10-4 S·cm-2·s n ) | Y0 error / % | n | n error / % | Ω·cm2 | % | 10-3 | |
0Cr | 12.32 | 1.022 | 11.510 | 2.578 | 0.9432 | 0.860 | 507 | 2.563 | 4.470 |
3Cr | 12.04 | 0.489 | 6.031 | 1.107 | 0.8240 | 0.337 | 1099 | 1.146 | 0.799 |
6Cr | 10.94 | 0.569 | 2.538 | 1.207 | 0.7880 | 0.308 | 1585 | 0.982 | 0.818 |
9Cr | 13.22 | 1.105 | 0.961 | 1.773 | 0.8466 | 0.428 | 8570 | 2.265 | 3.080 |
12Cr | 10.70 | 0.514 | 1.028 | 0.728 | 0.8639 | 0.179 | 14490 | 1.349 | 0.682 |
值得注意的是,图5表明,随着Cr含量的增加,存在可能不止一个时间常数。为了确定这种情况,评估了其他的EEC模型。2个时间常数的EEC模型,无论是并联还是串联,是迄今为止最常提出的模型[15,36];而电路元件的物理解释并不总是很清楚,现在仍然存在很大的争议。对2个时间常数的EEC模型进行了模拟,但模拟误差明显较高,导致这些模型不适合解释本工作。
如表3所示,随着Cr含量增加,Rct从507 Ω·cm2增加到14490 Ω·cm2,具有双电层电容特性的Y0值由11.510 × 10-4 S·cm-2·s n 减至1.028 × 10-4 S·cm-2·s n,说明在0Cr~12Cr样品电极/溶液界面的电极反应过程中,随着Cr含量增加,离子扩散和迁移的阻碍作用逐渐增加,样品的电极反应速率逐渐降低,这与图3中动电位极化曲线测量的结果是一致的。
2.4 腐蚀形貌
恒电位极化后TWIP钢样品的表面腐蚀形貌如图9所示。从图9a1和a2可以看出,0Cr样品腐蚀最严重,其表面完全被一层黑色腐蚀产物覆盖。此外,0Cr样品表面有许多裂纹和碎片。随着Cr含量的增加,腐蚀程度逐渐减弱。3Cr和6Cr样品较轻微腐蚀(见图9b1和b2,图9c1和c2),但当Cr含量达到9%时只发生微弱的腐蚀,9Cr和12Cr样品显示出无法辨别的腐蚀微观结构(见图9d1和d2,图9e1和e2)。因此,有理由判断当Cr添加量超过9%时,TWIP钢具有更好的耐腐蚀性能。
图9
图9 恒电位极化测试后TWIP钢样品表面形貌的OM像和SEM像
Fig.9 OM (a1-e1) and SEM (a2-e2) images showing the surface morphologies after the potentiostatic polarization tests for 0Cr (a1, a2), 3Cr (b1, b2), 6Cr (c1, c2), 9Cr (d1, d2), and 12Cr (e1, e2) samples
2.5 腐蚀产物
0Cr~12Cr样品准钝化膜的高分辨XPS (Fe2p3/2、Mn2p3/2和Cr2p3/2)见图10和11。以图11a的9Cr样品为代表,Fe2p3/2的XPS显示了4个峰,分别是706.8 eV处的金属Fe (Fe-met)、709.9 eV处的FeO、710.7 eV处的Fe2O3和713.5 eV处的FeOOH。Mn2p3/2的XPS显示3个峰,分别为638.78 eV处的金属Mn (Mn-met)、640.7 eV处的MnO和641.1 eV处的MnO2。Cr2p3/2的XPS也显示了3个峰,分别为574.0 eV处金属Cr (Cr-met)、576.0 eV处的Cr2O3和577.0 eV处的Cr(OH)3。0Cr和3Cr样品(图10a和b)的XPS中只观察到了金属氧化物峰,而6Cr样品(图10c)的XPS中出现Fe-met、Mn-met和Cr-met 3个金属峰,纯金属峰的出现说明6Cr样品的耐腐蚀性能有所提高。
图10
图10 0Cr、3Cr和6Cr样品的XPS
Fig.10 XPS of 0Cr (a), 3Cr (b), and 6Cr (c) TWIP steel samples
图11
图11 9Cr和12Cr样品的XPS
Fig.11 XPS of 9Cr (a) and 12Cr (b) TWIP steel samples
基于XPS结果,样品的阳离子分数Fecat、Mncat和Crcat如图12所示。阳离子分数定义[15]如下:以Fecat为例,Fecat = Feion / (Feion + Mnion + Crion),其中Feion、Mnion和Crion分别是Fe、Mn和Cr金属离子的原子分数。Mncat和Crcat以此类推。结果表明,Fe是氧化物层的主要组成成分,但随着基体中Cr含量的增加,Fe氧化物含量明显降低。Mn氧化物的比例也随着Cr含量的增加而减少。应该注意的是,随着Cr含量的增加,Cr的氧化物质增加,这将对TWIP钢的耐腐蚀性能提供不同的贡献。此外,与其他铁基合金一样,Cr的一个重要作用是在晶粒上形成钝化膜以防止高锰TWIP钢基体腐蚀[23,37],因为Mn是一种极易腐蚀的元素。上述结果与动电位极化曲线和EIS结果一致。
图12
图12 基于XPS结果的样品表面膜的阳离子分数
Fig.12 Cationic fractions in surface film of samples based on the XPS results
3 结论
(1) TWIP钢在Cr含量为3%~12%时仍具有稳定的单一奥氏体相。
(2) 随着Cr添加量的增加,腐蚀电位和电荷转移电阻增加,腐蚀电流密度降低。这表明Cr添加可以提高TWIP钢的耐腐蚀性能。
(3) 在晶粒上形成几种Cr氧化物以及准钝化膜有助于提高TWIP钢的耐腐蚀性能。
来源--金属学报