分享:原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能
陈斐,1,2,3, 邱鹏程1, 刘洋1,2, 孙兵兵4, 赵海生4, 沈强1
以Ni粉与Ti粉为原料,采用激光定向能量沉积(LDED)技术制备NiTi形状记忆合金。利用XRD、物相拟合、SEM、EDS和DSC等测试方法,对NiTi合金的显微组织、物相含量和物相转变进行分析,随后采用压缩圆柱样品进行形状记忆效应测试,并评估其形状记忆效应。激光能量密度较低时,NiTi合金中产生大量Ni4Ti3相沉淀,随着激光能量密度增加,Ni4Ti3相消失。激光能量密度为20.0 J/mm2时,NiTi合金具有2878 MPa的压缩断裂强度与34.9%的压缩失效应变,且样品在循环20 cyc后具有88.2%形状记忆恢复率。
关键词:
NiTi形状记忆合金因其优异的性能,如形状记忆效应、超弹性效应、低弹性模量、生物相容性、耐腐蚀和抗疲劳性以及高阻尼性能,已被广泛应用于生物医学领域和工业工程领域[1~3]。在NiTi合金中,除了2种常见的相,即高温奥氏体母相B2和低温马氏体相B19?,在B2与B19?之间的相转变过程中还可以观察到中间R相[4,5]。在近等原子比NiTi合金中,相变温度可以随着Ni含量变化而变化,Ni含量增加0.1% (原子分数)会使相变温度降低10℃,因此可以通过控制Ni和Ti元素的比例,调整NiTi合金的相变温度[6~8]。目前,制备复杂形状NiTi合金的方法主要有传统铸造和粉末冶金技术,然而在制备过程中会产生大量脆性氧化物杂质,并且由于Ni和Ti之间的扩散率不同以及NiTi合金形成过程中会产生高热量反应,传统制备技术很难制备具有较高相对密度的样品[9]。
增材制造(additive manufacturing,AM)技术可以显著降低制备过程中的氧化程度,并通过在惰性气体环境中固化粉末来获得较高相对密度的样品,并且AM技术制备的NiTi合金得到了广泛的研究[7,10~12],例如:Marattukalam等[7]研究表明,激光功率和扫描速率显著影响激光近净成形(laser engineered net shaping,LENS)生产的NiTi合金的相组成、微观结构和耐腐蚀性。Saedi等[10]研究表明,固溶处理对选区激光熔化(selective laser melting,SLM)制备的NiTi合金的强度、超弹性和形状记忆效应有很大影响。Zhao等[11]研究表明,激光能量输入对SLM制备的NiTi合金的显微组织、相变和形状记忆效应有显著影响。Zhang等[12]研究表明,超声振动可以显著影响激光定向能量沉积(laser directed energy deposition,LDED)制备的NiTi合金的显微组织(组织均匀性、内部缺陷、元素组成、晶粒尺寸和相组成)和力学性能(超弹性、显微硬度和Young's模量)。在LDED中,金属粉末通过同轴喷嘴被吹送到激光束聚焦的位置,并受到高能量密度的激光作用,产生熔池。如果是Ni和Ti 2种纯金属粉末原料,可以分别装入不同粉筒中,并通过调节送粉速率来制备具有特殊形状记忆效应的富Ni、近等原子比或者富Ti的NiTi合金。粉末原料按照计算机辅助设计模型和规定的扫描路径沉积[1,13~15]。传统制备方法无法避免机械加工后处理产生的局部效应,并且这种局部效应也会降低NiTi形状记忆合金的性能[16~20],而LDED技术能够制备完全致密的近净或净成形零件[8,21],也可制备具有功能和分级微结构零件[13,22~24],可以有效避免机械加工后处理产生的局部效应。通过调控LDED工艺参数来制备具有空间和时间相关功能响应的NiTi形状记忆合金,并实现4D打印技术[25,26]。
目前,大多数研究关注NiTi合金的超弹性性能[8,10,12,27],对其形状记忆效应的研究较少,并且常用的球形金属粉末是昂贵的近等原子比NiTi合金粉末[2,5,7,28],而利用Ni、Ti粉末原位反应制备的NiTi合金成本低廉且具有较高的力学性能[12,27,29]。本工作利用LDED技术以及原位合成的方法成功制备出近等原子比NiTi形状记忆合金,并系统研究了NiTi合金的力学性能和形状记忆效应随激光能量密度的变化规律。
1 实验方法
实验采用LDED技术原位合成NiTi合金,利用双粉桶模式可以单独控制Ni粉和Ti粉的流量,并将Ni粉和Ti粉混合,然后送入激光束中形成熔池。实验选用尺寸为150 mm × 150 mm × 10 mm的NiTi合金板为基材,基材表面分别用200、400和600号砂纸进行逐级打磨,并用无水乙醇反复清洗,以除去基材表面残存的氧化物和油污等杂质。选用纯度分别为99.8%和99.9%的球形Ni粉和球形Ti粉作为原材料,成分列于表1。采用TruLaser Cell 3000激光定向能量沉积设备进行打印,一号粉筒输送球形Ni粉,二号粉筒输送球形Ti粉,在高纯Ar气气氛中,通过控制送粉流量使Ni粉与Ti粉原子比为50.7∶49.3。固定扫描速率(v)为15 mm/s和光斑直径(d)为1 mm,通过改变激光功率(P)实现以不同激光能量密度(E)的方式沉积样品,激光能量密度计算公式如下[2,7]:
表1 球形Ni粉和Ti粉的化学成分 (mass fraction / %)
Table 1
Powder | Ni | Ti | Fe | Cu | Co | Ca | Mg | H | O | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|
Ni | 99.865 | - | 0.03 | 0.008 | 0.075 | 0.008 | 0.002 | - | - | - | 0.012 |
Ti | - | 99.927 | - | - | - | - | - | 0.001 | 0.054 | 0.005 | 0.013 |
选取激光功率为300、325、350和375 W,对应的激光线能量密度为20.0、21.7、23.3和25.0 J/mm2。打印块体样品尺寸为15 mm × 15 mm × 15 mm,实验采用的扫描策略为层间旋转90°。使用电火花线切割机对沉积的样品进行金相样品切割,然后进行机械抛光,使用体积比为HF∶HNO3∶H2O = 1∶3∶5腐蚀液对抛光后的样品表面腐蚀15 s。采用CuKα 靶材D/max-2550/PC型X射线衍射仪(XRD)以10°/min扫描速率进行物相分析。利用Q20差式扫描量热仪(DSC)对样品相变行为进行表征,选定测试温度范围为0~140℃,变温速率为10℃/min。采用Quanta FEG250场发射扫描电子显微镜(FE-SEM)及所附的能谱仪(EDS)观察球形粉末形貌和样品内部的微观结构以及分析元素组成。在样品的x-z面上切割出直径3 mm、厚度0.2 mm薄片,然后使用砂纸机预磨,最后使用离子减薄法获取透射电镜样品,利用JEM-2100透射电镜(TEM)观察样品内部的微观结构。在样品的x-z面上切割出直径4.5 mm、长度10 mm的压缩圆柱试样[30],然后利用Instron 5566万能试验机以0.3 mm/min的应变速率进行室温压缩和形状记忆效应(shape memory effect,SME)测试。SME测试中采用应变控制模式的循环压缩实验,在每个循环过程中,样品在室温下被压缩至12%的应变,然后卸载至10 MPa,通过附在夹具上的高温引伸计测量应变,使用改装压缩夹具上的加热器进行样品加热,使用压缩夹具中的内部液氮流进行样品冷却,使用k型热电偶测量温度。压缩循环20 cyc后,将样品以4℃/min速率加热至比奥氏体转变结束温度(Af)高30℃,并保温5 min以确保样品完全恢复至奥氏体状态。其中,采用常温可恢复应变(εrec)、加热后可恢复应变(εSME)和形状记忆恢复率(η = εSME / εtot × 100%,εtot为加热前的总不可恢复应变)[25]来表征样品的SME性能。
2 实验结果与分析
图1给出了Ni粉和Ti粉颗粒形貌和尺寸分布。SEM像显示Ni粉和Ti粉颗粒呈球形。常用于LDED成型的金属粉末粒径范围为53~106 μm[23],本工作80%的Ni粉粒径分布范围为50~121 μm,80%的Ti粉粒径分布范围为58~115 μm,满足LDED成型对粉末粒径的范围要求。
图1

图1 粉末颗粒的尺寸分布和形貌
Fig.1 Size distributions and morphologies (insets) of Ni powder (a) and Ti powder (b) (D10, D50, and D90 indicate 10%, 50%, and 90% cumulative particle sizes, respectively)
2.1 NiTi合金的物相组成与微观结构
图2给出激光能量密度分别为20.0、21.7、23.3和25.0 J/mm2时NiTi合金的XRD谱和物相拟合图。对图2a中各相衍射峰面积进行积分,计算出B19?马氏体相、B2奥氏体相和NiTi2相的体积分数。结果表明,室温下NiTi合金样品的主要组成相为B19?马氏体相和B2奥氏体相,当激光能量密度增加时,奥氏体峰强减弱,马氏体峰强增加。此外还含有NiTi2、Ni4Ti3析出相,当激光能量密度超过21.7 J/mm2时,Ni4Ti3相峰位消失。由物相分析可知在打印过程中发生以下反应[31]:
图2

图2 不同激光能量密度下NiTi合金的XRD谱及其物相拟合结果
Fig.2 XRD spectra (a) and phase fitting results of as-built NiTi alloys with E = 20.0 J/mm2 (b), 21.7 J/mm2 (c), 23.3 J/mm2 (d), and 25.0 J/mm2 (e) (E―laser energy density)
以上反应均为放热反应,可自发生成。图3为拟合后各物相的变化结果。随着激光能量密度从20.0 J/mm2增加至25.0 J/mm2,B19?马氏体相体积分数从38%增加至75.4%,B2奥氏体相体积分数从53.1%降低至5.6%,NiTi2相体积分数从3.6%增加至19%。图4为不同激光能量密度下NiTi合金的致密度及x-z面形貌像。不同激光能量密度下的NiTi合金均未见裂纹缺陷及微孔,但试样表面存在部分未熔合颗粒。激光能量密度为20.0、21.7、23.3和25.0 J/mm2的样品致密度分别为98.7%、98.1%、97.9%和97.5%,其中激光能量密度为20.0 J/mm2的样品致密度最高,随着激光能量密度增大,致密度下降,这是由于能量输入较大导致材料蒸发严重,溶池来不及填充被蒸发的区域或粉末中气体来不及逸出,最终形成缺陷。
图3

图3 NiTi合金中B19?、B2和NiTi2相含量随激光能量密度的变化
Fig.3 Variations of volume fractions of B19?, B2, and NiTi2 in as-built NiTi alloys with laser energy density
图4

图4 不同激光能量密度下NiTi合金的致密度及其x-z面形貌像
Fig.4 Relative densities and corresponding SEM images (insets) in x-z plane of as-built NiTi alloys with different laser energy densities
图5为不同激光能量密度下NiTi合金的SEM像,其中特征区域的EDS点扫描结果如表2所示。随着激光能量密度增加,样品中组织组成发生了改变,当激光能量密度为20.0 J/mm2时,样品中含有大量针状组织b1 (Ni和Ti原子比为1.34)以及带状组织b2 (Ni和Ti原子比为1.47),由于b1和b2处的Ni / Ti原子比接近Ni4Ti3比例,故可得出针状组织b1和带状组织b2为Ni4Ti3相。当激光能量密度增加至21.7 J/mm2时,带状组织Ni4Ti3相消失,当激光能量密度增加至23.3 J/mm2时,针状组织Ni4Ti3相消失,出现枝晶组织f1 (Ni和Ti原子比为0.95),以及枝晶间隙组织f2 (Ni和Ti原子比为0.52),根据原子比可知,f1为NiTi相,f2为NiTi2相。当激光能量密度增加至25.0 J/mm2时,微观组织与前者相同,但枝晶间隙组织面积增大,即NiTi2相含量增大。综上,Ni4Ti3相会随着激光能量密度增加而消失,NiTi2相含量随着激光能量密度增加而增加,这与前面物相拟合结果相一致,Ni4Ti3相和NiTi2相含量的变化是由于Ni的蒸发烧损导致的,在成形过程中,粉末被快速加热至熔点以上,由于激光在短时间内的高能量输入,金属粉末会从熔池中蒸发,由于Ni的沸点(3186 K)低于Ti (3560 K),且Ti的平衡蒸气压远低于Ni,从而导致Ni的蒸发[32~34],激光能量密度越大,Ni蒸发烧损越剧烈,Ni和Ti原子比越小,就更趋向形成NiTi2相,同时不利于Ni4Ti3相形成。根据修正的NiTi二元合金相图[35]可知,由于NiTi2相的反应温度(1257 K)低于NiTi相反应温度(1583 K),故在较高激光能量密度下NiTi2相更容易生成[31,36]。
图5

图5 不同激光能量密度下NiTi合金的SEM像
Fig.5 Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of as-built NiTi alloys with E = 20.0 J/mm2 (a, b), 21.7 J/mm2 (c, d), 23.3 J/mm2 (e, f), and 25.0 J/mm2 (g, h)
表2 不同激光能量密度下NiTi合金的EDS分析结果
Table 2
E | Point in Fig.5 | Atomic fraction of Ni | Atomic fraction of Ti | Ni∶Ti |
---|---|---|---|---|
J·mm-2 | % | % | ||
20.0 | b1 | 57.4 | 42.6 | 1.34 |
b2 | 59.5 | 40.5 | 1.47 | |
21.7 | d1 | 49.1 | 50.9 | 0.96 |
d2 | 57.8 | 42.2 | 1.37 | |
23.3 | f1 | 48.6 | 51.4 | 0.95 |
f2 | 34.1 | 65.9 | 0.52 | |
25.0 | h1 | 48.6 | 51.4 | 0.95 |
h2 | 36.6 | 63.4 | 0.58 |
图6显示激光能量密度为20.0、21.7、23.3和25.0 J/mm2时NiTi合金的TEM像。随着激光能量密度增加,材料内部的位错由初始的低密度位错组态逐渐转变为位错缠结的高密度位错组态,其中激光能量密度为25.0 J/mm2时NiTi合金显示出较高密度的位错,且位错相互缠结形成许多位错群,这是由于处于较高激光能量密度下,样品在打印过程中存在较大的残余应力,使样品内部出现位错缠结,同时,位错密度越高抵抗变形能力越强。图6a插图显示激光能量密度为20.0 J/mm2时NiTi合金的选区电子衍射(SAED)花样,表明样品基体为B2结构的NiTi相。
图6

图6 不同激光能量密度下NiTi合金的TEM像和选区电子衍射花样
Fig.6 TEM images of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) (Inset in Fig.6a shows the corresponding SAED pattern)
2.2 NiTi合金的相变行为
图7为不同激光能量密度下NiTi合金的DSC曲线,并将马氏体相转变开始温度(Ms)、马氏体相转变结束温度(Mf)、奥氏体相转变开始温度(As)、Af列于表3。NiTi合金的相转变特征受多个因素共同影响,包括沉淀物的形成、Ni蒸发、O含量等[8,28,37]。当激光能量密度较低时(20.0和21.7 J/mm2),升温时出现R相变,这通常与NiTi合金中含有大量Ni4Ti3相有关[34,38],当激光能量密度较高时(23.3和25.0 J/mm2),由于增加了Ni的蒸发,抑制了Ni4Ti3相生成,未出现R相变。在低激光能量密度的R→B2相变中,出现2个吸热峰,这主要是因为试样内存在较大的残余应力[32],而残余应力的存在会阻碍奥氏体相变的进行,故奥氏体转变会发生滞后现象,当奥氏体相变完成后,试样内残余应力得到释放,故降温过程中,马氏体相变只出现了单峰。当激光能量密度较高时(23.3和25.0 J/mm2),R相变消失,加热时只出现一个吸热峰,对应于B19?→B2相变,降温时也只出现一个放热峰,对应于B2→B19?相变。激光能量密度为20.0、21.7、23.3和25.0 J/mm2时Af分别为102.7、107.1、109.3和111.2℃。可见Af随着激光能量密度增加呈上升趋势,这是由于较高激光能量密度会导致Ni蒸发,从而使相变温度升高,值得注意的是LDED工艺制备近原子比NiTi合金的相转变温度比SLM高70℃[4,8,10,34]。另外,当激光能量密度从20.0 J/mm2增加至25.0 J/mm2时,相变焓ΔHM→A从5.27 J/g增加到20.50 J/g。
图7

图7 不同激光能量密度下NiTi合金的DSC曲线
Fig.7 DSC curves of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) (Ms—martensitic transformation start temperature, Mf—martensitic transformation end temperature, As—austenite transformation start temperature, Af—austenite transformation end temperature, ΔHM→A—austenite transformation enthalpy, ΔHA→M—martensite transformation enthalpy)
表3 不同激光能量密度下NiTi合金相变温度 (oC)
Table 3
E / (J·mm-2) | Ms | Mf | As | Af |
---|---|---|---|---|
20.0 | 68.9 | 37.2 | 71.9 | 102.7 |
21.7 | 68.1 | 39.3 | 75.9 | 107.1 |
23.3 | 71.3 | 40.0 | 76.5 | 109.3 |
25.0 | 65.9 | 31.8 | 75.5 | 111.2 |
2.3 NiTi合金的力学行为
图8显示了不同激光能量密度下NiTi合金的室温压缩应力-应变曲线。所有曲线均存在2个屈服平台,这是典型的双屈服现象[39],每条曲线均包括4个阶段:马氏体弹性变形阶段(Ⅰ)、马氏体去孪晶阶段(Ⅱ)、去孪晶马氏体弹性变形阶段(Ⅲ)和去孪晶马氏体塑性变形阶段(Ⅳ)。另外,利用切线法获得马氏体去孪晶阶段的临界应力σc,当激光能量密度从20.0 J/mm2增加至25.0 J/mm2时,σc从313 MPa增加至443 MPa,且激光能量密度为20.0 J/mm2的样品表现出2878 MPa的超高压缩断裂强度(σUCS)与34.9%的较大失效应变(δ),比SLM制备的富镍Ni50.1Ti40.9的相应值[40] (1620 MPa和30.2%)还要高出1258 MPa和4.7%。当激光能量密度继续增加时,样品的σUCS与δ 均有所下降(表4),其中NiTi2相含量增加(图3)是导致压缩性能下降的主要原因,当激光能量密度从20.0 J/mm2增加至25.0 J/mm2时,NiTi2相体积分数为19%,Li等[36]指出,大量NiTi2金属间化合物会使NiTi合金变脆,从而使NiTi合金具有高σUCS和低δ。
图8

图8 不同激光能量密度下NiTi合金的压缩应力-应变曲线
Fig.8 Compressive stress-strain curves of as-built NiTi alloys (Inset shows the locally enlarged curve. Ⅰ—elastic deformation stage of twin martensite, Ⅱ—detwinning martensite stage, Ⅲ—elastic deformation stage of detwinning martensite, Ⅳ—plastic deformation stage of detwinning martensite, σc—critical stress of detwinning martensite)
表4 不同激光能量密度下NiTi合金常温压缩性能
Table 4
E / (J·mm-2) | σc / MPa | σUCS / MPa | δ / % |
---|---|---|---|
20.0 | 313 | 2878 | 34.9 |
21.7 | 334 | 2410 | 27.9 |
23.3 | 342 | 2386 | 26.5 |
25.0 | 443 | 2312 | 13.6 |
近等原子比NiTi合金因具有独特的形状记忆效应而被广泛研究[20,40~42]。图9显示了制备的NiTi合金在应变控制下的循环压缩曲线和产生的形状记忆效应,并将结果列于表5。当样品在常温下以12%应变压缩循环20 cyc后,发现随着激光能量密度增加,样品的常温εrec从8.383%减小至6.510%,εrec的变化与B2相含量的变化一致,当样品加载时会发生B2→B19?转变,卸载时发生B19?→B2转变[25],故εrec与B2相含量呈正相关,Marattukalam等[7]研究也表明B2相含量越高,可恢复应变越大。随后将样品加热至Af以上时,此时样品中残留的稳定B19?相会受热驱动的影响转变为B2相,同时加热会消除B19?相的塑性应变[42,43],产生形状记忆效应。在加热条件下,随着激光能量密度增加,样品的εSME从3.190%增加至4.052%,εSME的变化与B19?相含量的变化一致,但样品的η从88.2%降低至73.8%,这是由于样品中Ni4Ti3相含量不同导致的。当激光能量密度为20.0 J/mm2时,样品中含有大量Ni4Ti3相,且随着激光能量密度增加,Ni4Ti3相逐渐消失。Kim和Miyazaki[41]研究表明,Ni4Ti3相对位错具有钉扎作用,可改善NiTi合金的形状记忆效应。本工作的形状记忆恢复率结果远高于SLM制备的富镍Ni50.1Ti40.9的相应值(η = 82.6%)[40],另外,加热后不可恢复应变归因于残留的稳定马氏体[44]。
图9

图9 不同激光能量密度下NiTi合金20 cyc循环压缩应力-应变曲线
Fig.9 Compression stress-strain curves of as-built NiTi alloys with E = 20.0 J/mm2 (a), 21.7 J/mm2 (b), 23.3 J/mm2 (c), and 25.0 J/mm2 (d) for 20 cyc (εSME—recovery strain after heating, εrec—recovery strain before heating)
表5 不同激光能量密度下NiTi合金20 cyc循环压缩的形状记忆效应 (%)
Table 5
E / (J·mm-2) | εrec | εtot | εSME | η |
---|---|---|---|---|
20.0 | 8.383 | 3.617 | 3.190 | 88.2 |
21.7 | 7.390 | 4.610 | 3.937 | 85.4 |
23.3 | 6.022 | 5.978 | 4.729 | 79.1 |
25.0 | 6.510 | 5.490 | 4.052 | 73.8 |
3 结论
(1) 采用原位激光定向能量沉积制备NiTi合金,当激光能量密度较小(20.0和21.7 J/mm2)时,样品中生成弥散分布的针状Ni4Ti3相和带状Ni4Ti3相,当激光能量密度较大(23.3和25.0 J/mm2)时,样品中针状Ni4Ti3相和带状Ni4Ti3相消失。NiTi2相在NiTi相晶界处生成,且随着激光能量密度增加,NiTi2相体积分数逐渐增加。
(2) NiTi合金的相变温度随激光能量密度的增加变化不大,但其相变温度较高,Af达到111.2℃,超过SLM打印NiTi合金的Af。当激光能量密度较小(20.0和21.7 J/mm2)时,有R相生成,当激光能量密度较大(23.3和25.0 J/mm2)时,无R相生成,只表现出两步相变,并且R相的生成与Ni4Ti3相存在有关。
(3) NiTi合金的形状记忆恢复率随激光能量密度的增加而下降,原因是Ni4Ti3相可以促进形状记忆效应,并且增加激光能量密度会导致NiTi相体积分数下降,从而降低形状记忆恢复率。当激光能量密度为20.0 J/mm2时,制备NiTi合金具有2878 MPa较高的压缩断裂强度与34.9%的压缩失效应变,且循环20 cyc后具有88.2%形状记忆恢复率。
来源--金属学报